

Cambridge IGCSE[™](9–1)

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0973/42

Paper 4 Theory (Extended)

May/June 2025

2 hours

You must answer on the question paper.

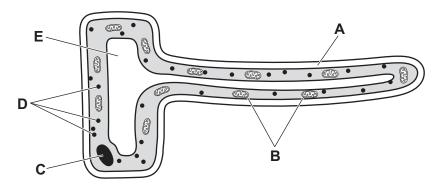
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.
- Take the weight of 1.0 kg to be 9.8 N (acceleration of free fall = 9.8 m/s²).

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.


This document has 28 pages. Any blank pages are indicated.

DC (SL) 355401 © UCLES 2025

[Turn over

1 Fig. 1.1 is a diagram of a root hair cell.

2

Fig. 1.1

(a)	Using letters A – E in Fig. 1.1, identify the part of the cell:
	where protein synthesis takes place
	made from cellulose
(b)	Amino acids are used in protein synthesis.
	State the name of the process used to transport amino acids from sources to sinks in plants.
	[1]
(c)	Root hair cells are specialised for absorption.

Table 1.1

Complete Table 1.1 about substances absorbed by root hair cells.

substance	method of absorption	one use of substance in plant			
water					
nitrate ions					

[2]

(d) Fig. 1.2 shows two of the same plant cells, one immersed in pure water (water with no chemical impurities) and the other immersed in concentrated salt solution.

3

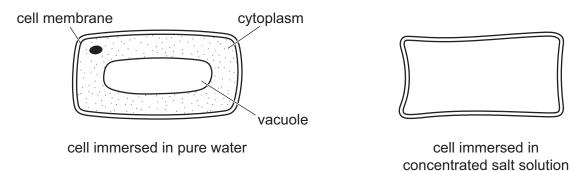


Fig. 1.2

Complete Fig. 1.2 to show the contents of the plant cell immersed in the concentrated salt solution. [2]

(e)	Explain the effects of high winds on transpiration rate in plants.
	[3]
	[Total: 10]

0973/42/M/J/25

2 Fig. 2.1 is a diagram of the human breathing system.

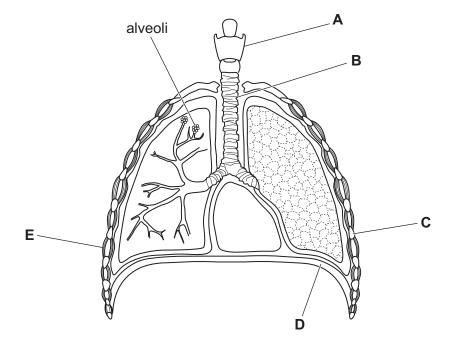


Fig. 2.1

a)	Using letters A – E in Fig. 2.1, identify the:
	trachea
	diaphragm

[2]

(b) Alveoli are the gas exchange surface in humans.

Describe two features of an efficient gas exchange surface.

	1	 	 	
•		 	 	
2	2			
				[2]

(c) Table 2.1 shows the composition of inspired and expired air.

Table 2.1

5

	composition/%						
gas	inspired air	expired air	difference				
oxygen	21.00	16.00	-5.00				
carbon dioxide	0.04	4.00					
water vapour	low	high	increased				

(i) Calculate the difference in composition of the carbon dioxide in Table 2.1.

		Write your answer in Table 2.1. [1]
	(ii)	Explain the differences in composition between inspired and expired air.
		[3]
(d)	A st	udent runs very fast for 20 minutes.
		rate and depth of breathing increases during exercise and stays high after the studentinished running.
	Ехр	lain why the rate and depth of breathing stays high after the student has finished running
		[4]

[Total: 12]

3 (a) Table 3.1 shows the diameter of a flu virus and different types of cells.

Table 3.1

6

	diameter/μm
flu virus	0.1
bacterial cell	1.0
red blood cell	7.0
lymphocyte	15.0
plant cell	50.0
human egg cell	120.0

(i)	Calculate	the	difference	in	size	between	the	largest	and	smallest	animal	cells	İI
	Table 3.1.												

(ii)	State the name of the cell in Table 3.1 that contains haemoglobin.	
		[1]

..... μm [2]

(b) Complete the sentences about an immune response to a flu virus infection.

Use words from the list.

active	antibod	ies e	nzymes	
lymphocytes	passive	pathogens	phagocytes	
The flu virus has antigen	s on its surface.	Proteins with	n a specific shape bind	I to antigens.
These proteins are called				
This causes the virus to be	e destroyed or m	arked for eng	ulfing by	
After the infection, a huma	ın has		immunity to the	flu virus. [3]

(d)

7

Flu vaccinations are used each year to protect people from flu virus infection.
Outline how this vaccine gives protection.
[3]
The flu virus reproduces quickly and often mutates.
Suggest why a new vaccine is developed every year.
[2]

[Total: 11]

- 4 Orcas are large mammals that live in the sea.
 - (a) Orcas reproduce using egg cells and sperm cells like humans.

Describe two adaptive features of egg cells.

1	 	 	
2	 	 	
			[2]

(b) Fig. 4.1 shows part of a marine food web for an orca.

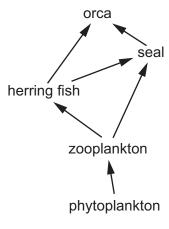


Fig. 4.1

(i) Orcas feed at more than one trophic level.

State the name of the lowest trophic level orcas feed at as shown in Fig. 4.1.

.....[1]

(ii) Humans also eat herring fish.

Draw an arrow and label for humans on Fig. 4.1.

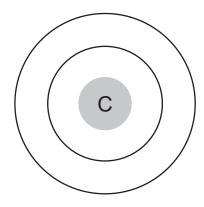
[1]

(c) An orca tangled in a fishing net is found dead on a beach.

The orca has a high level of PCB in its body.

PCB is a pollutant that stops orcas reproducing.

Suggest how human activity is causing the population of orcas to decrease.
[3]


9

[Total: 7]

5 (a) The element carbon has a proton (atomic) number of 6.

Complete Fig. 5.1 to show the electronic configuration of a carbon atom.

10

Fig. 5.1

[1]

(b) A carbon atom has 6 neutrons.

State the mass number of this carbon atom.

(c) State the number of atoms in 1 mole of carbon.

(d) Fig. 5.2 shows two different forms of the element carbon.

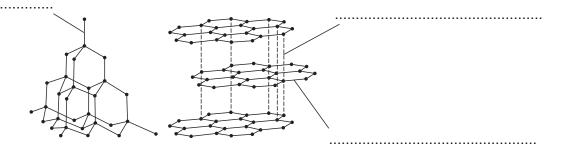


Fig. 5.2

(i) Complete the labels on Fig. 5.2.

Use phrases from the list.

Each phrase can be used once, more than once, or not at all.

weak forces

ionic bond

metallic bond

covalent bond

[3]

(ii) One of the forms of carbon in Fig. 5.2 is diamond.

Explain why diamond is used in cutting tools.	
[2	2]

(e) Carbon reacts with hydrogen to form methane, CH_4 .

Complete the dot-and-cross diagram in Fig. 5.3 to show the bonding in methane.

11

Only show the outer-shell electrons.

Fig. 5.3

[2]

[Total: 10]

6 (a) Fig. 6.1 shows the structural formula of a molecule, X.

12

Fig. 6.1

(i) Deduce the molecular formula of molecule X.

(ii) Explain why molecule **X** is **not** a hydrocarbon.

(b) Molecule **X** can be drawn using a box to represent the carbon chain.

This is shown in Fig. 6.2.

Fig. 6.2 also shows another molecule, **Y**.

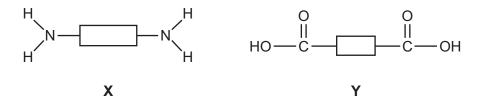


Fig. 6.2

Molecules of **X** react with molecules of **Y** to make the polymer nylon.

Draw the structure of the polymer nylon.

_)★ ■■ ■■	00080000013 * DFD	
ı		13	
	(c)	The formation of nylon is an example of condensation polymerisation.	
		Describe two differences between condensation polymerisation and addition polymerisation.	
		1	
		2	
		[2]]
	(d)	Molecule Y reacts with sodium carbonate.	
		Carbon dioxide is made in the reaction.	
		State the test for carbon dioxide.	
		Include the observation for a positive result.	
		test	
		observation[2]	1
	(0)		ı
	(e)	Carbon dioxide is a simple molecular compound.	
		Tick (✓) two properties of simple molecular compounds.	
		good electrical conductivity when molten	
		high boiling point	
		low melting point	
		malleable	
		poor electrical conductivity when solid	
]
		[Total: 10]]

7 (a) The ionic compound sodium sulfate contains the ions Na⁺ and SO_4^{2-} .

Determine the formula of sodium sulfate.

(b) Copper sulfate is also an ionic compound.

A student investigates the electrolysis of aqueous copper(II) sulfate using copper electrodes.

Fig. 7.1 shows the student's experiment.

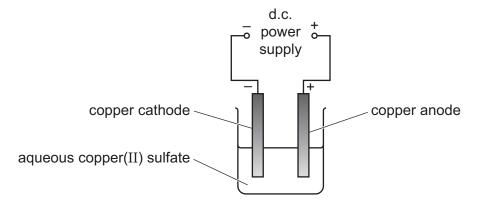


Fig. 7.1

Describe what the student observes at the ahode.	
	[1]
	[.]

(c) (i) Copper is deposited at the cathode.

Write the ionic half-equation for the formation of copper, Cu, from copper ions, Cu²⁺.

(ii) The ionic half-equation for the reaction at the anode is shown.

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

Explain if the reaction at the anode is oxidation or reduction.

(d) A student investigates the displacement reactions of copper, magnesium, zinc and iron.

The student adds a piece of each metal to solutions of the metal sulfates.

Table 7.1 shows the student's results.

Table 7.1

15

	copper sulfate	magnesium sulfate	zinc sulfate	iron sulfate
copper		×	×	×
magnesium	1		✓	✓
zinc	1	×		✓
iron	✓	×	×	

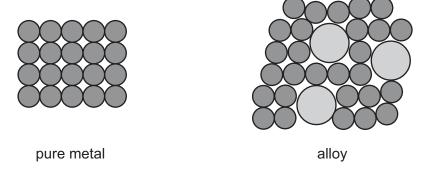
✓ = reaction

x = no reaction

(i)	Deduce the order of reactivit	y of the metals.
		most reactive

..... least reactive

(ii) Construct the balanced symbol equation for the reaction of magnesium with zinc sulfate, ZnSO₄.


[2]

© UCLES 2025

(e) Brass is an alloy of the metals copper and zinc.

Fig. 7.2 shows the structure of a pure metal and of an alloy.

16

Fig. 7.2

explain why brass is harder and stronger than copper or zinc.
[0]
[2]

[Total: 11]

* 0000800000017 * DFD

17

BLANK PAGE

© UCLES 2025

8 A student investigates the reaction between dilute hydrochloric acid and solid pieces of calcium carbonate.

18

(a) The balanced symbol equation for the reaction is shown.

Complete the state symbols in the equation.

$$2HCl(.....) + CaCO_3(.....) \rightarrow CaCl_2(aq) + CO_2(.....) + H_2O(l)$$
 [2]

(b) The student measures the total volume of carbon dioxide made every minute for 7 minutes.

Fig. 8.1 shows a graph of the student's results.

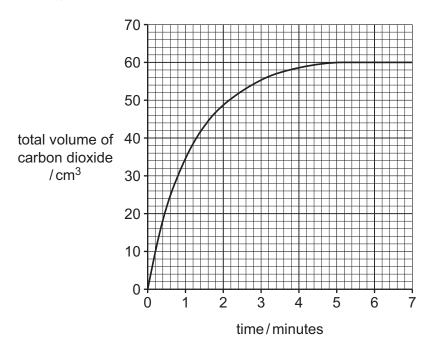


Fig. 8.1

(i) State when the reaction finished.

(ii) The student repeats the experiment with larger pieces of calcium carbonate.

The student uses the same volume and concentration of hydrochloric acid and the same mass of calcium carbonate.

Draw on Fig. 8.1 the line for the student's results. [1]

acid.

(c) The student predicts the reaction will be faster with a higher concentration of hydrochloric

19

Explain why the student is correct.

(d) Calculate the mass of calcium chloride, ${\rm CaC}\,l_2$, made when 0.2 moles of hydrochloric acid react with excess calcium carbonate.

$$2\mathsf{HC}\mathit{l} + \mathsf{CaCO}_3 \rightarrow \mathsf{CaC}\mathit{l}_2 + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O}$$

[A_r: Ca, 40; C*l*, 35.5; H, 1]

mass of calcium chloride = g [3]

[Total: 9]

9 (a) A torch (flashlight) consists of a battery, a switch and a lamp connected in series.

Fig. 9.1 shows a torch.

20

Fig. 9.1

- (i) State the energy store which decreases when the battery powers the lamp.

 [1]

 (ii) State the energy transfer from the battery to the lamp.

 [1]

 (iii) State the energy transfer from the lamp to the surroundings.
- (b) A diver with mass 70 kg stands 5.0 m above a swimming pool as shown in Fig. 9.2.

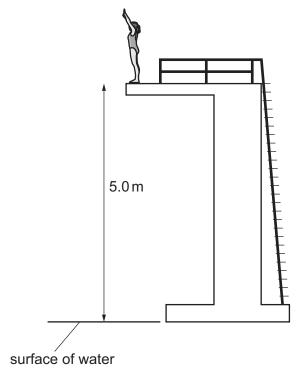


Fig. 9.2

(i) The diver falls 5.0 m.

Calculate the change in gravitational potential energy of the diver.

21

	gravitational potential energy =
(ii)	As the diver falls toward the water, there are no frictional forces acting on the diver.
	State the kinetic energy of the diver just before entering the water.
	kinetic energy = J [1]
(iii)	Calculate the speed of the diver just before entering the water.

[3]

10 (a) (i) State the relationship between the direction of vibration and the direction of propagation of a transverse wave.

22

......[1

(ii) Circle all examples of transverse waves.

seismic P wave sound ultraviolet

visible light water wave [2]

(b) (i) On Fig. 10.1, draw the path of two rays of light from point X which reflect from the plane mirror.

Use the rays of light to locate the image of point **X** formed by the plane mirror.

Mark the position of the image with the letter Y.

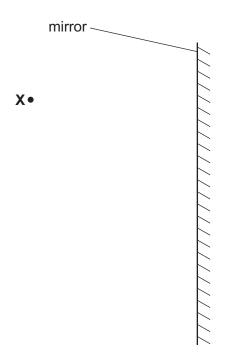


Fig. 10.1

(ii) Circle all the properties of the image formed by a plane mirror.

diminished inverted (upside down) magnified

real upright virtual [2]

(c) Blue light waves have a frequency of $6.6 \times 10^{14} \, \text{Hz}$.

The speed of light is $3.0 \times 10^8 \, \text{m/s}$.

Calculate the wavelength of the blue light waves.

	wavelength = m [2]
(d)	When white light passes through a prism, it undergoes dispersion.
	Describe dispersion in terms of wave frequency.
	You may wish to draw a diagram to illustrate your answer.
	101

23

0973/42/M/J/25

[Total: 12]

11

(a)		nuclear power station, the process of nuclear fission is used to generate electrical power.
	Des	cribe the process of nuclear fission.
		[2]
(b)	Ura	nium-235 has the nuclide notation $^{235}_{92}$ U.
	(i)	State the number of protons in a nucleus of uranium-235.
		[1]
	(ii)	Determine the number of neutrons in a nucleus of uranium-235.
		[1]
(c)	The	re is a step-up transformer in the nuclear power station.
	(i)	State the change made to the voltage by a step-up transformer.
		[1]
	(ii)	Explain why a step-up transformer is used at the nuclear power station before transmission to homes.
		[3]
(d)	A st	ep-down transformer is used near homes.
()		primary voltage is 30 000 V and the primary coil has 25 000 turns.
		secondary coil has 90 turns.
		culate the secondary voltage.
	Jul	and the contract of the contra

24

secondary voltage =V [2]

[Total: 10]

12 (a) The explosion of a supernova forms a nebula.

	Stat	e what may form from this nebula.	
			[1]
(b)	(i)	Describe how energy is released in a star such as the Sun.	
			[3]
	(ii)	Energy is released in the core of the Sun.	
		Explain how thermal energy travels, by convection, through the outer gas layers of surface of the Sun.	the
			[2]
	(iii)	Energy from the Sun travels to Earth by radiation.	
		Satellites in orbit around the Earth can be in direct sunshine for long periods of time.	
		Suggest the colour and texture chosen for the outer surface of a satellite to limit temperature of the satellite.	the
			[2]
(c)	Con	nplete the sentences to describe the Big Bang Theory.	
	The	Universe initially expanded from a place of high	
	The	Universe is still expanding.	
	The	Universe is approximately years old.	[2]

25

[Total: 10]

26

BLANK PAGE

* 0000800000027 * DFD

27

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2025

nents
<u>a</u>
Ш
0
Ф
$\overline{}$
ā
_
່ບ
.≃
ğ
.≃
riodi
iodi
riodi
e Periodio
Periodic
ne Periodi
he Periodi

	=	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson -
	II/				6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Αt	astatine -	117	<u>s</u>	tennessine -
	5				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium	116		livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	E	bismuth 209	115	Mc	moscovium
	2	-			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Ŀ	flerovium -
	=	-			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204	113	R	nihonium –
											30	Zu	zinc 65	48	В	cadmium 112	80	Ρ̈́g	mercury 201	112	ű	copernicium -
											59	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
dn											28	z	nickel 59	46	Pq	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium -
Group											27	ဝိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109		
		-	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
					J						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium
				Key		loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
					atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	90	dubnium -
						ator	relat				22	F	titanium 48	40	ZĽ	zirconium 91	72	Ξ̈́	hafnium 178	104	¥	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_				3	:=	lithium 7	1	Na	sodium 23	19	メ	potassium 39	37	&	rubidium 85	55	Cs	caesium 133	87	Ē	francium -

28

Lu Lu	lutetium 175	103	۲	lawrencium	ı
o Vp					
e9 Tm	thulium 169	101	Md	mendelevium	1
88 Ē	erbium 167	100	Fm	fermium	I
67 Ho	holmium 165	66	Es	einsteinium	1
66 Dy	dysprosium 163	86	ŭ	califomium	1
65 Tb	terbium 159	97	益	berkelium	ı
64 Gd	gadolinium 157	96	Cm	curium	1
63 Eu	europium 152	92	Am	americium	1
62 Sm	samarium 150	94	Pn	plutonium	1
e1 Pm	promethium —	93	d	neptunium	1
°° Z	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Ce Ce	cerium 140	06	드	thorium	232
57 La	lanthanum 139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).